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Abstract
In this paper the geometry of two-qubit systems under a local unitary group
SO(2) ⊗ SU(2) is discussed. It is shown that the quaternionic conformal map
intertwines between this local unitary subgroup of Sp(2) and the quaternionic
Möbius transformation which is rather a generalization of the results of Lee
et al (2002 Quantum Inf. Process. 1 129).

PACS numbers: 03.67.−a, 03.65.Ud

1. Introduction

There has been considerable recent interest in understanding the structure of one, two, three
and multi-qubit systems, from the geometrical point of view [1–8]. The relation between
the conformal map (or Hopf fibration in [2]), and single qubit and two-qubit states was first
studied by Mosseri and Dandoloff [2] in quaternionic skew-field and subsequently have been
generalized to three-qubit state based on octonions by Bernevig and Chen [6]. Also some
attempts have been made to figure out the notion of entanglement and basic geometry of the
space of states [5, 7, 8]. From an information-theoretic standpoint, the construction of well-
defined entanglement measure typically relies on the concept of entanglement monotone which
is non-increasing under local operations and classical communication. Such transformations
are called LOCC [4, 9, 10]. For instance, the most widely utilized measure for two-qubit is
concurrence introduced by Wootters [11].

However, it seems that there is also another geometrical approach to describe pure two-
qubit states called conformal groups [12]. As is typical in physics, the local properties are
more immediately useful than the global properties, and the local unitary transformation is
of great importance. Therefore in this paper, we pursue a different approach to study the
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geometrical structure of two-qubit states under a local unitary subgroup of Sp(2) [13]. We
show that the quaternionic conformal map (QCM) of a pure two-qubit system intertwines
between the local subgroup Sp(2) and corresponding quaternionic Möbius transformations
(QMT) [14–16] which can be useful in theoretical physics such as quaternionic quantum
mechanics [17], quantum conformal field theory [12, 18] and quaternionic computations
[19]. However the action of transformations that involve with non-commutative quaternionic
skew-field on a spinor (living in quaternionic Hilbert spaces) is more complicated than the
complex one. Roughly speaking one must distinguish between the left and right actions of
a quaternionic transformations on a given state (e.g see [20]). This anomalous property of
quaternionic transformation lead us of defining the special QMT.

The paper is organized as follows: in section 2, we briefly summarize one-qubit geometry
and conformal map in a commutative diagram. In section 3, we introduce the basic geometric
structure together with basic background material, incorporating all the information we need
for characterization of two-qubit geometry. Section 4 is devoted to study the commutativity
of QCM in details. The paper is ended with a brief conclusion and one appendix.

2. One-qubit geometry

We will denote by HF
d the Hilbert space of dimension d in F = C or Q. Let us consider an

arbitrary one-qubit pure state in the complex two dimensional Hilbert space HC
2

|ψ〉 = α1|0〉 + α2|1〉, |α1|2 + |α2|2 = 1, α1, α2 ∈ C. (1)

We summarize the results of [1] in a commutative diagram fashion convenient for our purposes
as

where P is the conformal mapping for the one-qubit system, i.e.,

P(|ψ〉) := α1α
−1
2 ∈ C̃ = C ∪ {∞}, (2)

and FA ∈ PSU(2) = SU(2)/{±I } is the Möbius transformation corresponding to the 2 × 2
matrix A ∈ SU(2)

A =
(

a b

c d

)
←→ FA(z) = az + b

cz + d
a, b, c, d, z ∈ C. (3)

The Möbius transformations generate the conformal group in the plane and can be identified
using the stereographic projection with conformal transformations on the sphere. The action
of the Möbius group on the Riemann sphere is transitive in the sense that there is a unique
Möbius transformation which takes any three distinct points on the Riemann sphere to any
other set of three distinct points. Commutativity of the above diagram means that for any
one-qubit state |ψ〉 and any A ∈ SU(2) we have

FAP(|ψ〉) = P(A|ψ〉). (4)

This shows that the conformal mapping P intertwines between any single-qubit unitary
operation A and its corresponding Möbius transformation FA. It is tempting to try to extend
this diagram to the system of bipartite two-qubit systems. Due to the difference between the
dimensions of single qubit and two-qubit systems, all the above processes must be modified
in a convenient way which is discussed in the next section.
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3. Basic tools and definitions

We will require some preliminary definitions and results. Therefore this section devoted to
provide some basic tools and background to describe the geometrical properties of two-qubit
pure states.

3.1. Quaternionic conformal map

The Hilbert space HC
4 for the compound system is the tensor product of the individual Hilbert

spaces HC
2 ⊗ HC

2 with a direct product basis {|00〉, |01〉, |10〉, |11〉}. A two-qubit pure state
reads

|ψ〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉 α, β, γ, δ ∈ C, (5)

with normalization condition |α|2 + |β|2 + |γ |2 + |δ|2 = 1. Using the quaternionic skew-field
Q, we can equivalently restate every |ψ〉 ∈ HC

4 by a quaterbit |ψ̃〉 ∈ HQ
2 as [2]:

Q(|ψ〉) := |ψ̃〉 = q1|0̃〉 + q2|1̃〉, q1 = α + βj, q2 = γ + δj, |q1|2 + |q2|2 = 1.

(6)

One can easily check that the map Q is a complex linear map, that is

Q(c1|ψ1〉 + c2|ψ2〉) = c1Q(|ψ1〉) + c2Q(|ψ2〉) ∀ c1, c2 ∈ C.

The simplest way to introduce the conformal map for the two-qubit system is to proceed along
the same line as for the one-qubit case, but using quaternions instead of complex numbers (see
the appendix):

P(|ψ̃〉) := q1q
−1
2 = 1

|q2|2 [(α + βj)(γ − δj)] = 1

|q2|2 (S + Cj) ∈ Q̃ = Q ∪ {∞}, (7)

where the Schmidt (S) and concurrence (C) terms are defined as follows:

S := αγ + βδ, C := βγ − αδ. (8)

It should be mentioned that the map P is related to the projection of the second Hopf fibration
of the form

P : Q2 −→ QP 1 (9)

where QP 1 is the one dimensional quaternionic projective space. Note that if S = 0 then |ψ〉
has Schmidt decomposition

|ψ〉 = |q1‖0〉1|e〉2 + |q2‖1〉1|f 〉2, (10)

where {|e〉, |f 〉} is two orthonormal basis for the second qubit. Moreover, C is proportional to
one of the entanglement measures C(|ψ〉) := 〈ψ |σy ⊗ σy |ψ〉 called concurrence [11] where
ψ denotes the complex conjugation and σy is one of the Pauli spin operators. Concurrence
is widely used to quantify entanglement of two-qubit systems. In fact 2C = C and if C = 0
then |ψ〉 unentangled in the sense that it can be written as a tensor product of two pure state
of individual subsystems, i.e., |ψ〉 = |φ〉1|ϕ〉2. The quaternionic conformal map P ′ defined
by P ′ := q−1

2 q1 is distinct from P and may be interpreted as one for the dual space. Indeed it

can be easily verified that P ′(〈ψ̃ |) = P(|ψ̃〉).
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3.2. Local unitary subgroup of Sp(2)

Before discussing the local unitary subgroup of Sp(2), we would add some short discussion
on the transformation properties of the two-qubit entangled state and its quaternionic
representative. It would simplify later presentation considerably if we represent the |ψ〉
of equation (5) by the 2 × 2 matrix:

	 =
(

α β

γ δ

)
(11)

which gives rise to the transformation property |ψ〉 → A′ ⊗ A|ψ〉, for A′, A ∈ SU(2)

	 �→ A′	AT (12)

where AT refers to the transposed of A. The quaternionic version of this transformation is

|ψ̃〉 → A′|ψ̃〉(a − bj). (13)

The quaternionic counterpart of group SU(2) for the two-qubit system seems to be group
Sp(2) which is defined as

Sp(2) := {B ∈ GL(2, Q) : B†B = I }, (14)

or equivalently can be expressed by

Sp(2) := {U ∈ U(4) : UJUT = J }. (15)

where J := I ⊗ ε with ε ≡ −iσ2. Since the two-qubits systems have entanglement
property, therefore we will consider operations which do not change the entanglement measure
(concurrence) throughout the diagram. As it is well known such operations must act locally
on each individual qubit . Therefore we restrict ourself to local subgroup B � SO(2)⊗SU(2)

of the group Sp(2) where its corresponding complex form CB reads

CB =
(

cos θ sin θ

−sin θ cos θ

)
⊗

(
a b

−b̄ ā

)
, (16)

and we will investigate the problem for these local unitary operations in the next section. Within
this interesting scenario it is a trivial and well-known fact that the measure of entanglement
(concurrence) does not change regarding the local unitary transformations like B.

3.3. Quaternionic Möbius transformations

The main difficulty in establishing the quaternionic approach to Möbius transformation is the
non-commutativity of the quaternions. Beside that, it is rather seamless to carry over much of
the complex theory. For M ∈ SL(2, Q) we define the QMT

M =
(

m11 m12

m21 m22

)
←→ FM(q) := (qm11 + m12)(qm21 + m22)

−1 mij ∈ Q, (17)

with the conventions FM(∞) = m11m
−1
21 and FM

(−m22m
−1
21

) = ∞. As is the case with
C̃, there is a Möbius transformation taking any three given points to any other three points,
however, it is not unique. It is easily seen that FMM ′ = FM ◦FM ′ where matrix multiplication
is defined in the usual way, i.e., MM ′ = (mi1m

′
1j +mi2m

′
2j ). The set of all such transformations

forms a group under composition. This set is identified naturally with the quotient space
PSL(2, Q) = SL(2, Q)/{±I }. However, again due to the non-commutativity of the field Q,
in addition to FM there are several possibilities to define the QMT [16], i.e.,

F ′
M(q) = (qm21 + m22)

−1(qm11 + m12)

F ′′
M(q) = (m11q + m12)(m21q + m22)

−1

...
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Therefore, the extending of the commuting QCM which intertwines between the group B and
the corresponding QMT fixing, the measure of entanglement is our purpose. As we will see
in the next section to attribute physical interpretation for the QMT and to fit the problem in a
commutative setting, it is necessary to choose equation (17) as a preferable definition of QMT.
This choice for the QMT is based on the implicit fact that we treat the space of quaternionic
spinors as a right module (multiplication by scalars from the right).

4. Two-qubit geometry

We now proceed one step further, and investigate the results of the previous section for
two-qubit pure states under the action of the local unitary subgroup B of Sp(2).

In this section it will be shown that a direct substitution of the definitions of the previous
section leads to the commutativity of the following diagram:

The purpose of the diagram is to verify whether the QCM intertwines between the operator
B ∈ B and the corresponding QMT FB . This implies that for any two-qubit pure state we
expect that the following equalities

PQ(CB|ψ〉) =? PB(Q|ψ〉) =? FBP(Q|ψ〉), (18)

symbol hold for any |ψ〉 ∈ HC
4 . By choosing each equality above one can breakdown this

diagram into three pairs of commutative pieces. Therefore, we study each of them which
every two-qubit (quaterbit) can influence by the maps introduced above. The above equalities
follow from the following calculations.

4.1. Calculating PQ(CB|ψ〉)
It is convenient to start with the first statement in equation (18)

PQ(CB|ψ〉) = P(|ψ̃ ′〉) = P(q ′
1|0̃〉 + q ′

2|1̃〉) = q ′
1q

′−1
2 , (19)

where q ′
1 and q ′

2 are results of the action of equation (16) on the general two-qubit pure state
equation (5) followed by the map Q as

q ′
1 = α′ + β ′j = [(aα + bβ) cos θ + (aγ + bδ) sin θ ] + [(āβ − b̄α) cos θ + (āδ − b̄γ ) sin θ ]j,

q ′
2 = γ ′ + δ′j = [(aγ + bδ) cos θ − (aα + bβ) sin θ ] + [(āδ − b̄γ ) cos θ − (āβ − b̄α) sin θ ]j.

(20)

On the other hand, equation (19) can be expressed in terms of Schmidt and concurrence terms

PQ(CB|ψ〉) = 1

|q ′
2|2

(S ′ + C ′j), (21)

where the norm of q ′
2 is

|q ′
2|2 = |q2|2 cos2 θ + |q1|2 sin2 θ − sin 2θ Re(S),

and the S ′ and C ′ are given by

S ′ = α′γ ′ + β ′δ′ = cos2 θS − sin2 θS̄ + 1
2 sin 2θ(|q2|2 − |q1|2), (22)
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C ′ = β ′γ ′ − α′δ′ = C. (23)

We observe that independent of the parameters a, b and θ , the concurrence term C ′ is invariant
under the action of CB. This observation is well known and fulfils our expectations that
entanglement can be changed only by global transformations. An interesting situation arises
when θ = 0, e.g., S ′ = S. This case coincides with the results of Mosseri et al in [2].

This is not the only way to get above results dealing with the geometry of two-qubit states.
In the next subsection, we shall establish the similar operations on a quaterbit and find the
same results.

4.2. Calculating PB(Q|ψ〉)
Considering the diagram we can proceed another approach to understand more about the two-
qubit entangled state. Unlike in the definition of B, in order to correctly represent the complex
transformation on the two-qubit state, the separable Sp(2) transformation on the quaternionic
spinor should be represented by left action of the 2 × 2 matrix A′ ∈ SO(2) containing sin θ

and cos θ , and right multiplication with the quaternion a − bj, as in equation (13). Hence by
applying the B ∈ B on a quaterbit |ψ̃〉 one can get(

cos θ sin θ

−sin θ cos θ

)
|ψ̃〉(a − bj) =

(
q ′

1

q ′
2

)
,

where q ′
1 and q ′

2 are the same as in equation (20). Therefore, the relevant part of the crucial
diagram (the first quadrangle) is commutative, i.e.,

Q(CB|ψ〉) = B(Q|ψ〉). (24)

It is clear that applying the QCM on the both sides of the above equation leads to the first
equality in equation (18).

4.3. Calculating FBP(Q|ψ〉)
We have already shown that the first equality in equation (18) holds. Let us now see what
happen on a quaterbit regarding the action of QMT. Using the linear map Q together with
QCM on a two-qubit pure state in equation (5) yields

PQ(|ψ〉) = P(|ψ̃〉) = P(q1|0̃〉 + q2|1̃〉) = q1q
−1
2 = 1

|q2|2 (S + Cj) (25)

Furthermore, this point is mapped under the action of the QMT in equation (17) as follows:

FB

(
1

|q2|2 (S + Cj)
)

=
(

1

|q2|2 (S + Cj)(a − bj) cos θ + (a − bj) sin θ

)

×
(

1

|q2|2 (S + Cj)(−a + bj) sin θ + (a − bj) cos θ

)−1

= cos2 θS − sin2 θS̄ + sin θ cos θ(|q2|2 − |q1|2) + Cj
|q2|2 cos2 θ + |q1|2 sin2 θ − sin 2θ Re(S)

.

Again we get precisely the same result as the two previous subsections meaning that the second
equality in (18) holds. This in turn implies that the QCM intertwines between the operator
B ∈ B and the corresponding QMT FB . This is what we have expected to see. To sum up we
have the three commutative diagrams for two-qubit pure states as mentioned above.



Quaternionic conformal map 6487

4.4. SU(2) ⊗ SO(2) transformation

So far we have considered the SO(2)⊗SU(2) subgroup of Sp(2) and find the total commutative
diagram. Let us now see what has been gained in considering the separable subgroup
B′ � SU(2) ⊗ SO(2), in the sense that SU(2) and SO(2) act on the first and second particles
of the pure two-qubit state respectively. It is easy to show that for this to occur, one must
consider the map

M −→ CM : M =
(

m11 m12

m21 m22

)
−→




z
(1)
11 z

(1)
12 − ¯z11

(2) − ¯z12
(2)

z
(1)
21 z

(1)
22 − ¯z21

(2) − ¯z22
(2)

z
(2)
11 z

(2)
12 ¯z11

(1) ¯z12
(1)

z
(2)
21 z

(2)
22 ¯z21

(1) ¯z22
(1)


 ,

where mij = z
(1)
ij + z

(2)
ij j and z

(1)
ij , z

(2)
ij ∈ C, which in turn induces the following definition for

the 2 × 2 symplectic group

Sp(2) := {U ∈ U(4) : UT J ′U = J ′}. (26)

where in this case J ′ = ε ⊗ I . Note that in the transformation A′ ⊗ A|ψ〉 and subsequently
in its matrix form matrixform), A′ and A could be any member of the group SU(2). On the
other hand in the quternionic version of transformation SO(2) ⊗ SU(2) on a quaterbit we
did not consider left or right action of the A′ ∈ SO(2) on a quaternionic spinor. However
here in our discussion A′ ∈ SU(2) while A ∈ SO(2) and the former acts on the quaternionic
spinor. Therefore unlike the SO(2) ⊗ SU(2) case, one must distinguish between the left and
right actions regarding quaternionic version of the separable subgroup SU(2) ⊗ SO(2) on a
quaterbit |ψ̃〉 ∈ HQ

2 . Roughly speaking in this case we must use the left action as follows(
aq1 + bq2

−b̄q1 + āq2

)
(cos θ − sin θ j) =

(
q ′

1

q ′
2

)

which implies that the first quadrangle in the main diagram is commutative, i.e.,

Q(CB ′|ψ〉) = B ′(Q|ψ〉), (27)

where B ′ ∈ B′. But unfortunately, in this case there is no apparent way to pick a particular
QMT in order to get total commutative diagram and hence the problem of intertwining QCM
will cease to exist.

5. Conclusion

In this paper, we considered the action of SO(2) ⊗ SU(2) part of quaternionic group Sp(2)

on a two-qubit pure state as a local transformation which obviously leaves invariant the
measure of entanglement. We have shown that QCM intertwines between local unitary
subgroup Sp(2) and QMT. It is rather interesting that the three way are so well related to
the important ingredients of a pure two-qubit state which are Schmidt and concurrence terms.
In this investigation we found that other definitions for QMT do not work. Another simple
consequence of our findings is that the choice of SU(2) action on the first particle leads to
the some essential changes on the main diagram in the sense that just the first quadrangle
becomes commutative together with the fact that one has to use the left action on the quaterbit.
Moreover in using SU(2) ⊗ SO(2) on the pure two-qubit state, there is no QMT which make
the diagram total commutative and subsequently there is nothing to do with QCM.
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Appendix. Quaternion

The quaternion skew-field Q is an associative algebra of rank 4 over R whose every element
can be written as

q = x0 + x1i + x2j + x3k, x0, x1, x2, x3 ∈ R with i2 = j2 = k2 = ijk = −1.

It can also be defined equivalently, using the complex numbers z1 = x0 + x1i and z2 = x2 + x3i
in the form q = z1 + z2j endowed with an involutory antiautomorphism (conjugation) such as

q = z1 + z2j ∈ C ⊕ Cj −→ q̄ = x0 − x1i − x2j − x3k = z̄1 − z2j.
Every nonzero quaternion is invertible, and the unique inverse is given by q−1 = 1

|q|2 q̄ where

the quaternionic norm |q| is defined by |q|2 = qq̄ = |z1|2 + |z2|2. The norm of two quaternions
q and p satisfies |qp| = |pq| = |p‖q|. Note that quaternion multiplication is non-commutative
so that q1q2 = q2q1 and jz = z̄j, where the last relation has been used in this paper extensively.

On the other hand a two dimensional quaternionic vector space V defines a four
dimensional complex vector space CV by forgetting scalar multiplication by non-complex
quaternions (i.e., those involving j or k). Roughly speaking if V has quaternionic dimension
2, with basis {|̃0〉, |̃1〉}, then CV has complex dimension 4, with basis {|00〉, |01〉, |10〉, |11〉}.
Moreover each matrix M ∈ M(2, Q), i.e., each linear map M = (mij ) : V −→ V defines a
linear map CM : CV −→ CV i.e., a matrix CM ∈ M(4, C). Concretely, in passing from V

to CV each entry mij = z
(1)
ij + z

(2)
ij j is replaced by the 2 × 2 complex matrix which means that

the map

M −→ CM : M =
(

m11 m12

m21 m22

)
−→




z
(1)
11 −z

(2)
11 z

(1)
12 −z

(2)
12

¯z11
(2) ¯z11

(1) ¯z12
(2) ¯z12

(1)

z
(1)
21 −z

(2)
21 z

(1)
22 −z

(2)
22

¯z21
(2) ¯z21

(1) ¯z22
(2) ¯z22

(1)


 ,

is injective and it preserves the algebraic structures such as C(M + M ′) = CM +
CM ′, C(MM ′) = (CM)(CM ′) and C(M†) = (CM)†, where (M†)ij = m̄ji . It is easy
to see that

M(2, Q) = {M ∈ M(4, C) : JMJ−1 = M̄},
where metric J is given by

J :=




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 .

Considering GL(2, Q) ⊆ M(2, Q) for the subset of invertible matrices; it is well known
[13–15] that M has a two-sided inverse in M(2, Q) if and only if the C(M(2, Q)) is invertible
in M(4, C) which implies that C(M(2, Q)) belongs to the group GL(4, C) which consisting
of all invertible 4 × 4 matrices. Of course, in this description, we also have

GL(2, Q) = {M ∈ GL(4, C) : JMJ−1 = M̄},
SL(2, Q) = {M ∈ GL(4, C) : det M = 1, JMJ−1 = M̄}.
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